Mission Innovation - Integrated Biorefineries Mission
Webinar on Biorefineries Efficiency Improvement

R&D for Advanced Biorefineries Sustainable Aviation Fuel Technologies

Mateus Ferreira Chagas

Brazilian Biorenewables National Laboratory (LNBR)

Brazilian Center for Research in Energy and Materials (CNPEM)

Overview of Liquid Fuels in Brazil in 2022

The challenge to produce Sustainable Aviation Fuels (SAF)

Global routes approved by ASTM

How to move from oxygenated feedstocks to hydrocarbons (fuels)?

What ICAO points for new SAF technologies

Coprocessing of biocrudes, with early energy-densification processes

Use of recalcitrant waste streams

Hybrid (bio- and thermochemical) or multi-technology conversions

Hydrocarbon fuels from hydrogen and carbon dioxide

Brazil-EU cooperation for advanced biofuels

Integrated bio- and thermochemical routes for SAF

04 Companies

11 Research Institutions

04 State Funding Agencies

Coordinated by University of Bologna

13 partners

07 EU countries

Horizon 2020 funding

Collection of literature, lab and pilot plant scale data

Techno-economic and environmental assessment of different biorefinery configurations

CORSIA Eligible Sustainable Aviation Fuels

Front-End Development of Innovative Technologies

There is no large-scale production of SAF in the world yet

At the moment, we must explore all possibilities

As an illustration:

Can **Biotechnology** be applied to promote feedstocks deoxygenation and produce SAF with lower environmental impact?

PNAS

Dimer-assisted mechanism of (un)saturated fatty acid decarboxylation for alkene production

CHEMICAL INCIDENCE OF THE PROPERTY OF THE PROP

From enzyme to cell-factory: Economic and environmental assessment of biobased pathways to unlock the potential of longhaul transportation biofuels

https://doi.org/10.1016/j.cej.2023.143878

SAF Biological Routes:

Milnbr CNPEM

Alkanes

An illustration of novel routes

Comparison with Conventional Technologies: 1GE FERM Sugarcane (SC) Ethanol

Sugarcane (SC)

- Scenarios A2 A4 have coproduction of hydroxy-fatty acids
- Sugarcane-based scenarios coproduce electricity

Take-home messages

- There is no large-scale production of SAF – room for innovation
- Integrated value chains and disruptive technologies may improve sustainability performance
- Sustainability assessment is essential, even in early R&D stages, and common global metrics must be defined

Thank you!

Mateus Ferreira Chagas mateus.chagas@Inbr.cnpem.br +55 (19) 3517-5031

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

MINISTRY OF SCIENCE TECHNOLOGY AND INNOVATION

cnpem.br